



# 4DCT Processing in SlicerAutoscoper<sup>M</sup>

#### Cesar Lopez

Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN.

SlicerAutoscoper<sup>M</sup> Workshop - ASB 2025 Pittsburgh, PA | August 13, 2025

#### **Outline**

- 4DCT overview
- Data upload
- Segmentation
  - Automatic Segmentation
- Creating models
- Registration Hierarchical3DRegistration
- Saving registration

#### **4DCT Overview**

- Traditional radiographs: overlapping anatomy; difficult to assess subtle joint abnormalities
- Three-dimensional imaging modalities (CT, MRI):
   single time point; viewed as serial 2D images
- Dynamic instability challenges: may appear "normal" on traditional imaging

#### Why 4DCT?

- Certain instabilities and impingements only appear during motion demonstrating a need for dynamic imaging
- 4DCT (3DCT over time) offers the opportunity to visualize bones during motion
  - Osteokinematics (bone motion) can be used to quantify bone biomechanics (or arthrokinematics) during motions and functional tasks

#### **4DCT Overview**



# **Processing 4DCT**













## Segmentation - Autoscoper<sup>M</sup>



# Segmentation - Autoscoper<sup>M</sup>



#### Segment Editor



#### Segment Editor



#### Segment Editor



#### **Model Creation**



## Saving NRRD, Volume Sequence, Model



#### Saving NRRD, Volume Sequence, Model



## Saving NRRD, Volume Sequence, Model













## Hierarchical3DRegistration – Saving Registration



## Hierarchical3DRegistration – Tracking file





- Community-driven
- Integration of BVR, 3DCT and 4DCT workflows into a single platform
- Standardization across institutions
- Promotes transparency and collaboration
- Faster learning curve: Improved accessibility for trainees and non-engineers
- Partial volumes? NOT A PROBLEM!!!!
  - \*Greater alignment in software capabilities may facilitate post-processing approaches
  - \*Software alignment may expedite translation to the clinic

## **Acknowledgments**



R01 AR071338 R01 AR078924

# **THANK YOU**



#### **Extra**

#### Image acquisition

A third-generation, dual-source CT scanner (SOMATOM Definition Force, Siemens Healthcare)
is used to acquire neutral-static and dynamic CT scans



Temporal resolution: 66 ms

### **Background – 4DCT Process**



#### **Background**

#### Image acquisition

#### • Static:

• Bilateral static (3D) CT volumes are acquired typically in neutral position using a routine CT scan protocol (120 kV, 200 mAs/rotation, 1 second gantry rotation).

#### • Dynamic:

- Bilateral dynamic (4D) CT volumes are acquired using sequential, dual-source cardiac protocol over a 1.5-second period
  - Data collection was triggered via EKG simulator (30 bpm)
  - Auditory and visual cues were delivered to participants with a digital metronome (70 bpm) to set the cadence such that a full motion cycle would be acquired during the scanning interval
- This yielded 17 sequential CT volumes evenly temporally-distributed across the motion cycle